176 research outputs found

    Shortest Paths Avoiding Forbidden Subpaths

    Get PDF
    In this paper we study a variant of the shortest path problem in graphs: given a weighted graph G and vertices s and t, and given a set X of forbidden paths in G, find a shortest s-t path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We call each path in X an exception, and our desired path a shortest exception-avoiding path. We formulate a new version of the problem where the algorithm has no a priori knowledge of X, and finds out about an exception x in X only when a path containing x fails. This situation arises in computing shortest paths in optical networks. We give an algorithm that finds a shortest exception avoiding path in time polynomial in |G| and |X|. The main idea is to run Dijkstra's algorithm incrementally after replicating vertices when an exception is discovered.Comment: 12 pages, 2 figures. Fixed a few typos, rephrased a few sentences, and used the STACS styl

    Visibility Graphs, Dismantlability, and the Cops and Robbers Game

    Get PDF
    We study versions of cop and robber pursuit-evasion games on the visibility graphs of polygons, and inside polygons with straight and curved sides. Each player has full information about the other player's location, players take turns, and the robber is captured when the cop arrives at the same point as the robber. In visibility graphs we show the cop can always win because visibility graphs are dismantlable, which is interesting as one of the few results relating visibility graphs to other known graph classes. We extend this to show that the cop wins games in which players move along straight line segments inside any polygon and, more generally, inside any simply connected planar region with a reasonable boundary. Essentially, our problem is a type of pursuit-evasion using the link metric rather than the Euclidean metric, and our result provides an interesting class of infinite cop-win graphs.Comment: 23 page

    A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

    Get PDF
    Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of O(n^7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture
    • …
    corecore